
;
; ELIZA by Joseph Weizenbaum.
;
; Any line beginning with a semicolon is commentary and was not part of
; the original ELIZA code. Each commentary block generally refers to the
; code just above it.
;

 CHANGE MAD
 EXTERNAL FUNCTION (KEY,MYTRAN) 000010
 NORMAL MODE IS INTEGER 000020
 ENTRY TO CHANGE. 000030
 LIST.(INPUT) 000040
 VECTOR VALUES G(1)=$TYPE$,$SUBST$,$APPEND$,ADD, 000050
 1$START$,$RANK$,$DISPLA$ 000060
 VECTOR VALUES SNUMB = $ I3 *$ 000070
 FIT=0 000080
CHANGE PRINT COMMENT $PLEASE INSTRUCT ME$ 001400
 LISTRD.(MTLIST.(INPUT),0) 001410
 JOB=POPTOP.(INPUT) 001420
 THROUGH IDENT, FOR J=1,1, J.G. 7 001430
IDENT WHENEVER G(J) .E. JOB, TRANSFER TO THEMA 001440
 PRINT COMMENT $CHANGE NOT RECOGNIZED$ 001450
 TRANSFER TO CHANGE 001460
THEMA WHENEVER J .E. 5, FUNCTION RETURN IRALST.(INPUT) 001470
 WHENEVER J .E. 7 001480
 THROUGH DISPLA, FOR I=0,1, I .G. 32 001490
 WHENEVER LISTMT.(KEY(I)) .E. 0, TRANSFER TO DISPLA 001500
 S=SEQRDR.(KEY(I)) 001510
READ(7) NEXT=SEQLR.(S,F) 001520
 WHENEVER F .G. 0, TRANSFER TO DISPLA 001530
 PRINT COMMENT $*$ 001540
 TPRINT.(NEXT,0) 001550
 PRINT FORMAT SNUMB,I 001560
 PRINT COMENT $ $ 001570
 TRANSFER TO READ(7) 001580
DISPLA CONTINUE 001590
 PRINT COMMENT $ $ 001600
 PRINT COMMENT $MEMORY LIST FOLLOWS$ 001610
 PRINT COMMENT $ $ 001620
 THROUGH MEMLIST, FOR I=1 , 1, I .G. 4 001630
MEMLST TXTPRT.(MYTRAN(I),0) 001640
 TRANSFER TO CHANGE 001650
 END OF CONDITIONAL 001660
 THEME=POPTOP.(INPUT) 001670
 SUBJECT=KEY(HASH.(THEME,5)) 001680
 S=SEQRDR.(SUBJECT) 001690
LOOK TERM=SEQLR.(S,F) 001700
 WHENEVER F .G. 0, TRANSFER TO FAIL 001710
 WHENEVER TOP.(TERM) .E. THEME, TRANSFER TO FOUND 001720
 TRANSFER TO LOOK 001730
FOUND TRANSFER TO DELTA(J) 001740
DELTA(1) TPRINT.(TERM,0) 001750
 TRANSFER TO CHANGE 001760
FAIL PRINT COMMENT $LIST NOT FOUND$ 001770
 TRANSFER TO CHANGE 001780
DELTA(2) S=SEQRDR.(TERM) 001790
 OLD=POPTOP.(INPUT) 001800
READ(1) OBJCT=SEQLR.(S,F) 001810
 WHENEVER F .G. 0, TRANSFER TO FAIL 001820
 WHENEVER F .NE. 0, TRANSFER TO READ(1) 001830

 INSIDE=SEQRDR.(OBJECT) 001840
READ(2) IT=SEQLR.(INSIDE,F) 001850
 WHENEVER F .G. 0, TRANSFER TO READ(1) 001860
 SIT=SEQRDR.(IT) 001870
 SOLD=SEQRDR.(OLD) 001880
ITOLD TOLD=SEQLR.(SOLD,FOLD) 001890
 DIT=SEQLR.(SIT,FIT) 001900
 WHENEVER TOLD .E. DIT .AND. FOLD .LE. 0,TRANSFER TO ITOLD 001910
 WHENEVER FOLD .G. 0, TRANSFER TO OK(J) 001920
 TRANSFER TO READ(2) 001930
OK(2) SUBST.(POPTOP.(INPUT),LSPNTR.(INSIDE)) 001940
 TRANSFER TO CHANGE 001950
OK(3) NEWBOT.(POPTOP.(INPUT),OBJCT) 001960
 TRANSFER TO CHANGE 001970
DELTA(3) TRANSFER TO DELTA(2) 001980
DELTA(4) WHENEVER NAMTST.(BOT.(TERM)) .E. 0 001990
 BOTTOM=POPBOT.(TERM) 002000
 NEWBOT.(POPTOP.(INPUT),TERM) 002010
 NEWBOT.(BOTTOM,TERM) 002020
 OTHERWISE 002030
 NEWBOT.(POPTOP.(INPUT),TERM) 002040
 END OF CONDITIONAL 002050
 TRANSFER TO CHANGE 002060
DELTA(6) S=SEQRDR.(TERM) 002070
READ(6) OBJCT=SEQLR.(S,F) 002080
 WHENEVER F .G. 0, TRANSFER TO FAIL 002090
 WHENEVER F .NE. 0, TRANSFER TO READ(6) 002100
 OBJCT=SEQLL.(S,F) 002110
 WHENEVER LNKLL.(OBJECT) .E. 0 002120
 SUBST.(POPTOP.(INPUT),LSPNTR.(S)) 002130
 OTHERWISE 002140
 NEWTOP.(POPTOP.(INPUT),LSPNTR.(S)) 002150
 END OF CONDITIONAL 002160
 TRANSFER TO CHANGE 002170
 R* * * * * * * * * * END OF MODIFICATION ROUTINE 002180
 END OF FUNCTION 002200
 TPRINT MAD
 EXTERNAL FUNCTION (LST) 000010
 NORMAL MODE IS INTEGER 000020
 ENTRY TO TPRINT. 000030
 SA=SEQRDR.(LST) 000040
 LIST.(OUT) 000050
READ NEXT=SEQLR.(SA,FA) 000060
 WHENEVER FA .G. 0, TRANSFER TO P 000070
 WHENEVER FA .E. 0, TRANSFER TO B 000080
 POINT=NEWBOT.(NEXT,OUT) 000100
 WHENEVER SA .L. 0, MRKNEG.(POINT) 000110
 TRANSFER TO READ 000120
B TXTPRT.(OUT,0) 000130
 SEQLL.(SA,FA) 000140
MORE NEXT=SEQLR.(SA,FA) 000150
 WHENEVER TOP.(NEXT) .E. $=$ 000160
 TXTPRT.(NEXT,0) 000170
 TRANSFER TO MORE 000180
 END OF CONDITIONAL 000190
 WHENEVER FA .G. 0, TRANSFER TO DONE 000200
 PRINT COMMENT $ $ 000210
 SB=SEQRDR.(NEXT) 000220
MEHR TERM=SEQLR.(SB,FB) 000230
 WHENEVER FB .L.0 000240
 PRINT ON LINE FORMAT NUMBER, TERM 000250
 VECTOR VALUES NUMBER = $I3 *$ 000260
 TRANSFER TO MEHR 000270

 END OF CONDITIONAL 000280
 WHENEVER FB .G. 0, TRANSFER TO MORE 000290
 TXTPRT.(TERM,0) 000300
 TRANSFER TO MEHR 000310
P TXTPRT.(OUT,0) 000320
DONE IRALST.(OUT) 000330
 FUNCTION RETURN 000340
 END OF FUNCTION 000350
 LPRINT MAD
 EXTERNAL FUNCTION (LST,TAPE) 006340
 NORMAL MODE IS INTEGER 006350
 ENTRY TO LPRINT. 006360
 BLANK = $ $ 006370
 EXECUTE PLACE.(TAPE,0) 006380
 LEFTP = 606074606060K 006390
 RIGHTP= 606034606060K 006400
 BOTH = 607460603460K 006410
 EXECUTE NEWTOP.(SEQRDR.(LST),LIST.(STACK)) 006420
 S=POPTOP.(STACK) 006430
BEGIN EXECUTE PLACE.(LEFTP,1) 006440
NEXT WORD=SEQLR.(S,FLAG) 006450
 WHENEVER FLAG .L. 0 006460
 EXECUTE PLACE.(WORD,1) 006470
 WHENEVER S .G. 0, PLACE.(BLANK,1) 006480
 TRANSFER TO NEXT 006490
 OR WHENEVER FLAG .G. 0 006500
 EXECUTE PLACE.(RIGHTP,1) 006510
 WHENEVER LISTMT.(STACK) .E. 0, TRANSFER TO DONE 006520
 S=POPTOP.(STACK) 006530
 TRANSFER TO NEXT 006540
 OTHERWISE 006550
 WHENEVER LISTMT.(WORD) .E. 0 006560
 EXECUTE PLACE.(BOTH,1) 006570
 TRANSFER TO NEXT 006580
 OTHERWISE 006590
 EXECUTE NEWTOP.(S,STACK) 006600
 S=SEQRDR.(WORD) 006610
 TRANSFER TO BEGIN 006620
 END OF CONDITIONAL 006630
 END OF CONDITIONAL 006640
DONE EXECUTE PLACE.(0,-1) 006650
 EXECUTE IRALST.(STACK) 006660
 FUNCTION RETURN LST 006670
 END OF FUNCTION 006680
;
; TESTS(CAND, S) return a sequence reader if the keyword matches the user's
; input text, otherwise return 0.
;
; CAND is the keyword candidate transformation rule
; S is the sequence reader for the user INPUT text
;
; This function has 3 tasks
;
; 1. Test whether the whole candidate keyword matches the whole word
; in the user's input text.
; 2. If the words do match, make any keyword substitution specified
; in the candidate transformation rule.
; 3. Position the candidate reader past the substitution keyword, if any.
;
; SLIP packs 6 6-bit characters into each 36-bit IBM 7094 machine word.
; If a word has more than 6 characters it is continued into the next SLIP
; cell, with the first cell having its sign bit set. ???
;

; This code abstracts this full-word matching and has the side-effect
; of modifying the user's input text with the substitution word, if
; specified.
;
 TESTS MAD
 EXTERNAL FUNCTION(CAND,S) 000010
 NORMAL MODE IS INTEGER 000020
 DIMENSION FIRST(5),SECOND(5) 000030
 ENTRY TO TESTS. 000040
 STORE=S 000050
 READER=SEQRDR.(CAND) 000060
 THROUGH ONE, FOR I=0,1, I .G. 100 000070
 FIRST(I)=SEQLR.(READER,FR) 000080
ONE WHENEVER READER .G. 0, TRANSFER TO ENDONE 000090
;
; Copy all 6-character chunks of the candidate keyword to the FIRST array.
;
; [As the loop termination condition is I .G. 100 (000070), this code will
; write past the end of the FIRST array if the keyword is longer than 36
; characters (because the first 36 characters will be copied to
; FIRST(0) .. FIRST(5), and any further characters will be written to
; machine words past FIRST(5)).]
;
ENDONE SEQLL.(S,F) 000100
 THROUGH TWO, FOR J=0,1, J .G. 100 000110
 SECOND(J)=SEQLR.(S,F) 000120
TWO WHENEVER S .G. 0, TRANSFER TO ENDTWO 000130
;
; Copy all 6-character chunks of the user input word to the SECOND array.
; [May write past the end of SECOND.]
;
ENDTWO WHENEVER I .NE. J, FUNCTION RETURN 0 000140
;
; If the keyword in FIRST has a different number of 6-character chunks to
; the word in SECOND the two words cannot be the same, so return the value 0,
; signifying no match.
;
; WHENEVER is an abbreviation of WHENEVER
; .NE. means not equal
; FUNCTION RETURN is an abbreviation of FUNCTION RETURN
;
 THROUGH LOOK, FOR K=0,1, K.G. J 000150
LOOK WHENEVER FIRST(K) .NE. SECOND(K), FUNCTION RETURN 0 000170
;
; Compare each 6-character chunk of the keyword with the corresponding chunk
; of the user input word. If any are different, return 0, signifying no match.
;
 EQL=SEQLR.(READER,FR) 000180
 WHENEVER EQL .NE. $=$ 000190
 SEQLL.(READER,FR) 000200
 FUNCTION RETURN READER 000210
 OTHERWISE 000220
;
; At this point we know that the keyword matches the user's word.
; Check whether the transformation rules specify a simple word substitution,
; signified by the presence of an "=".
;
; If it is not an "=", reposition the reader back before the element and
; return the reader, signifying a successful match.
;
 POINT=LNKL.(STORE) 000230
 THROUGH DELETE , FOR K=0,1, K .G. J 000240
 REMOVE.(LSPNTR.(STORE)) 000250

DELETE SEQLR.(STORE,F) 000260
INSRT NEW=SEQLR.(READER,FR) 000270
 POINT=NEWTOP.(NEW,POINT) 000280
 MRKNEG.(POINT) 000290
 WHENEVER READER .L. 0, TRANSFER TO INSRT 000300
 MRKPOS.(POINT) 000310
 FUNCTION RETURN READER 000320
 END OF CONDITIONAL 000330
 END OF FUNCTION 000340
;
; An "=" was present in the transformation rule. E.g. a script
; transformation rule may begin
;
; (YOUR = MY
; ((0 MY 0)
; (WHY ARE YOU CONCERNED OVER MY 3)
; (WHAT ABOUT YOUR OWN 3)
; :
;
; Say at this point the keyword YOUR has been found in the user's input text
; and we know that in the transformation rule the keyword (YOUR) is followed
; by an "=". So we're now going to replace the YOUR in the input text with
; the word following the "=" in the transformation rule (MY, in this case).
;
; First delete all the 6-character chunks that comprise this word, then
; insert all the 6-character chunks that comprise the replacement word.
;
; Finally, return the reader, signifying a successful match.
;
 DOCBCD MAD
 EXTERNAL FUNCTION (A,B) 000010
 NORMAL MODE IS INTEGER 000020
 ENTRY TO FRBCD. 000030
 WHENEVER LNKL.(A) .E. 0, TRANSFER TO NUMBER 000040
 B=A 000050
 FUNCTION RETURN 0 000060
NUMBER K=A*262144 000070
 B=BCDIT.(K) 000080
 FUNCTION RETURN 0 000090
 END OF FUNCTION 000100
;
; ELIZA entry point.
;
 ELIZA MAD
 NORMAL MODE IS INTEGER 000010
 DIMENSION KEY(32),MYTRAN(4) 000020
;
; KEY - A hashmap used to record keywords.
; KEY(0)..KEY(31) is the keyword->transformation rule hashmap
; KEY(32) is the "NONE" transformation rule
;
; MYTRAN - A hashmap used to record the MEMORY rules.
; MYTRAN(1)..MYTRAN(4) contain the four MEMORY rules.
;
; A note on MAD arrays: DIMENSION D(N) allocates N+1 machine-words of
; core memory, which are accessed using indexes 0..N.
;
 INITAS.(0) 000030
;
; INITAS must be the first executable statement in any program using SLIP.
; Its purpose is to create the List of Available Space from all unused
; core memory. It does not require an argument, but here is given 0.
;

 PRINT COMMENT $WHICH SCRIPT DO YOU WISH TO PLAY$ 000060
 READ FORMAT SNUMB,SCRIPT 000070
;
; Display the message "WHICH SCRIPT DO YOU WISH TO PLAY".
;
; Note that the IBM 7090/7094 character set doesn't include a question
; mark glyph. Also $ is used to delimit character strings.
;
; SNUMB is the FORTRAN format string " I3 *", defined previously, which
; expects the user to enter up to 3 decimal digits. This number is assigned
; to the variable SCRIPT and will be used as the tape drive unit number
; where the ELIZA script is expected to reside.
;
 LIST.(TEST) 000080
 LIST.(INPUT) 000090
 LIST.(OUTPUT) 000100
 LIST.(JUNK) 000110
;
; Initialise four lists. These are:
; TEST - Used to store the parts of the user's text matching a
; decomposition rule.
; INPUT - During ELIZA startup the selected script is read into this list,
; one round-bracketed list at a time.
; During the conversation phase the text entered by the user is
; read into this list.
; OUTPUT - ELIZA's response sentence is constructed in this list.
; JUNK - A list used for temporary storage for several different purposes.
;
 LIMIT=1 000120
;
; When Weizenbaum talks in the January 1966 CACM paper of a "certain counting
; mechanism", it is this to which he is referring. LIMIT has the value 1..4,
; in order, and then restarts at 1. The value changes to the next in the
; sequence at each user input. More on LIMIT below.
;
 LSSCPY.(THREAD.(INPUT,SCRIPT),JUNK) 000130
 MTLIST.(INPUT) 000140
;
; The THREAD function reads text from the tape unit specified by the integer
; SCRIPT into the INPUT list. The LSSCPY function copies the first list in
; that INPUT to the list named JUNK.
;
; The first list in an ELIZA script must be the hello message, e.g.
; (HOW DO YOU DO. PLEASE TELL ME YOUR PROBLEM).)
;
 THROUGH MLST, FOR I=1,1, I .G. 4 000150
MLST LIST.(MYTRAN(I)) 000160
;
; Initialise each of the four MYTRAN array entries as a new list.
;
; THROUGH is an abbreviation for THROUGH
; .G. is the Boolean grater than operator
;
; Set I to 1, if I is greater than 4 stop looping, otherwise execute the code
; up to and including the statement labelled MLST. Then add 1 to I and return
; to the top of the loop at the point of the test to see if I is greater than
; 4 and repeat.
;
; for I in 1..4 {
; call function LIST with argument a reference
; to the Ith entry in the MYTRAN array
; }
;

 MINE=0 000170
 LIST.(MYLIST) 000180
;
; MINE - Set to 0 and is never changed. It's referenced once below. ???
; MYLIST - As memories are made using the MYTRAN MEMORY rules they are
; recorded in MYLIST. Here MYLIST is being initialised as a new
; empty list.
;
 THROUGH KEYLST, FOR I=0,1, I .G. 32 000220
KEYLST LIST.(KEY(I)) 000230
;
; Initialise each of KEY(0) .. KEY(32) array entries as a new list.
; for I in 0..32 {
; call function LIST with argument a reference
; to the Ith entry in the KEY array
; }
;
 R* * * * * * * * * * READ NEW SCRIPT 000240
BEGIN MTLIST.(INPUT) 000250
 NODLST.(INPUT) 000260
 LISTRD.(INPUT,SCRIPT) 000270
;
; Empty the INPUT list. Remove the description list??? from INPUT (NODLST).
; Read the next round-bracket-delimited list from tape unit id SCRIPT.
;
 WHENEVER LISTMT.(INPUT) .E. 0 000280
 TXTPRT.(JUNK,0) 000290
 MTLIST.(JUNK) 000300
 TRANSFER TO START 000310
 END OF CONDITIONAL 000320
;
; WHENEVER is an abbreviation of WHENEVER.
; .E. means equals.
; TRANSFER TO is an abbreviation for TRANSFER TO.
; END OF CONDITIONAL is an abbreviation of END OF CONDITIONAL.
;
; An empty list signals the end of the ELIZA script. (Which is presumably
; why there is () on the last line of the published DOCTOR script.)
;
; if INPUT is the empty list {
; (the whole ELIZA script has now been read and processed)
; print the value of JUNK, e.g. "HOW DO YOU DO. PLEASE TELL ME YOUR PROBLEM"
; clear the JUNK list
; goto the START label
; }
;
 WHENEVER TOP.(INPUT) .E. $NONE$ 000330
 NEWTOP.(LSSCPY.(INPUT,LIST.(9)),KEY(32)) 000340
 TRANSFER TO BEGIN 000350
;
; If this list is the special "NONE" list, just copy it unchanged into KEY(32)
; and then goto BEGIN to read the next list in the script.
;
; Recall that the NONE list in the DOCTOR script is:
; (NONE
; ((0)
; (I AM NOT SURE I UNDERSTAND YOU FULLY)
; (PLEASE GO ON)
; (WHAT DOES THAT SUGGEST TO YOU)
; (DO YOU FEEL STRONGLY ABOUT DISCUSSING SUCH THINGS)))
;
 OR WHENEVER TOP.(INPUT) .E. $MEMORY$ 000360
 POPTOP.(INPUT) 000370

 MEMORY=POPTOP.(INPUT) 000380
 THROUGH MEM, FOR I=1,1, I .G. 4 000390
MEM LSSCPY.(POPTOP.(INPUT),MYTRAN(I)) 000400
 TRANSFER TO BEGIN 000410
;
; Otherwise, if this list is the special "MEMORY" list, process it into the
; four MYTRAN lists. Recall that the MEMORY list looks like this and is
; required to have exactly four transformation patterns:
; (MEMORY MY
; (0 YOUR 0 = LETS DISCUSS FURTHER WHY YOUR 3)
; (0 YOUR 0 = EARLIER YOU SAID YOUR 3)
; (0 YOUR 0 = BUT YOUR 3)
; (0 YOUR 0 = DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3))
;
; else if the first word in INPUT is "MEMORY" {
; assign the memory keyword (e.g. "MY") to the MEMORY variable
; for I in 1..4 {
; copy the Ith MEMORY pattern/reconstruction to MYTRAN(I)
; }
; goto the BEGIN label (continue reading the ELIZA script)
; }
;
 OTHERWISE 000420
 NEWBOT.(LSSCPY.(INPUT,LIST.(9)),KEY(HASH. 000430
 1 (TOP.(INPUT),5))) 000440
 TRANSFER TO BEGIN 000450
 END OF CONDITIONAL 000460
;
; Otherwise, the first word in the INPUT list is expected to be a keyword.
; Insert this keyword into the KEY hashtable, so that
; KEY(HASH(keyword)) -> list of transformation rules for keywords
; that hash to this entry in KEY (i.e. more than
; one keyword may hash to the same entry in KEY,
; so each entry in KEY may have zero, one or many
; keyword transformation rules associated with it.)
;
; (1 in column 11 signifies a continuation of the previous line.)
;
; The HASH function takes a word and a number (N) and returns a deterministic
; value between 0 and (2 to the power N)-1, in this case 0..31.
;
; else {
; HASH the keyword and append this transformation rule to the
; entry in KEY with that index
; goto the BEGIN label (continue reading the ELIZA script)
; }
;
; This is the end of the script reading code. When the script has been
; read and processed the script reader explicitly jumps to the START label
; to begin the user conversation.
;
 R* * * * * * * * * * BEGIN MAJOR LOOP 000470
START TREAD.(MTLIST.(INPUT),0) 000480
;
; Wait for the user to type a sentence and read it into the INPUT list,
; which is first cleared. Presumably, tape unit 0 is the console.
;
; TREAD is the SLIP system text read function.
;
 KEYWRD=0 000490
 PREDNC=0 000500
;
; KEYWRD - This will be the keyword found to have the highest precedence.

; PREDNC - The precedence of the keyword. Precedence is specified in the
; ELIZA script. E.g. (DREAMS = DREAM 3 (=DREAM)), the keyword
; DREAMS is given the precedence value 3.
;
 LIMIT=LIMIT+1 000510
 WHENEVER LIMIT .E. 5, LIMIT=1 000520
;
; Increment the value of LIMIT. If it then equals 5, set it back to 1.
; If we just read the very first user input, LIMIT will now have the value 2.
;
 WHENEVER LISTMT.(INPUT) .E. 0, TRANSFER TO ENDPLA 000530
;
; If the user input is a blank line, goto the ENDPLA label.
; A blank user input tells ELIZA the conversation is over.
;
 IT=0 000540
;
; IT - On exit from the scanning loop IT will either be the sequence
; reader for the selected transformation rule, or it will be 0
; indicating that no keyword was detected in the user's INPUT.
;
 WHENEVER TOP.(INPUT) .E. $+$ 000550
 CHANGE.(KEY,MYTRAN) 000560
 TRANSFER TO START 000570
 END OF CONDITIONAL 000580
;
; If first word of the user input is a "+" character, call the CHANGE
; function defined higher up in this code. This function allows the user
; to modify the current ELIZA script with the commands TYPE, SUBST,
; APPEND, ADD, START, RANK and DISPLA.
; After making any changes, return to the START label and carry on the
; conversation.
;
 WHENEVER TOP.(INPUT) .E. $*$, TRANSFER TO NEWLST 000590
;
; If first word of the user input is a "*" character, goto the NEWLST label.
; NEWLST is defined later in this code. It inserts a new transformation rule,
; which the user will have given after the "*", into the current in-memory
; script and then returns to the START label to carry on the conversation.
;
 S=SEQRDR.(INPUT) 000600
;
; Create the Slip sequence reader, S, for the user's INPUT list.
;
NOTYET WHENEVER S .L. 0 000610
 SEQLR.(S,F) 000620
 TRANSFER TO NOTYET 000630
;
; ???
;
 OTHERWISE 000640
 WORD=SEQLR.(S,F) 000650
 WHENEVER WORD .E. $.$.OR. WORD .E. $,$.OR. WORD .E. BUT 000660
 WHENEVER IT .E. 0 000670
 NULSTL.(INPUT,LSPNTR.(S),JUNK) 000680
 MTLIST.(JUNK) 000690
 TRANSFER TO NOTYET 000700
 OTHERWISE 000710
 NULSTR.(INPUT,LSPNTR.(S),JUNK) 000720
 MTLIST.(JUNK) 000730
 TRANSFER TO ENDTXT 000740
 END OF CONDITIONAL 000750
 END OF CONDITIONAL 000760

 END OF CONDITIONAL 000770
;
; Set the variable WORD to the next word in the user's INPUT list. Then
; test that word to see if it's a delimiter.
;
; Note that in Weizenbaum's 1966 CACM paper, only comma and period were
; listed as delimiters. And yet the example conversation given in that
; paper could not be reproduced unless BUT is also a delimiter.
;
; Note that WORD is a 36-bit integer. Weizenbaum developed ELIZA between
; 1964 and 1966 on an IBM 7094, which has a 36-bit word and uses a 6-bit
; character encoding. Characters were packed 6 to a word. In Slip, character
; strings longer than six characters are stored in successive list cells.
; In this case WORD=SEQLR.(S,F) is assigning the first six characters of
; the next word in the user's INPUT text to the integer variable WORD.
; If the word had fewer than six characters they would be left justified
; with space characters padding to the right.
;
;
; else {
; if WORD is one of the delimiters ".", "," or "BUT" {
; if we have found no keywords in the INPUT so far (IT .E. 0) {
; discard all words in INPUT to the left of, and including, this
; delimiter
; goto NOTYET and continue scanning the rest of the user INPUT
; for keywords
; }
; else {
; discard all words in INPUT to the right of, and including, this
; delimiter
; goto ENDTXT; scanning of the user INPUT is now complete
; }
; }
; }
;
 WHENEVER F .G. 0, TRANSFER TO ENDTXT 000780
;
; If there were no more words to read in the user INPUT list, goto the
; ENDTXT label; scanning of the user INPUT is now complete.
; (F will be 1 when the sequence reader has traversed the whole INPUT
; list and is back at the list header.)
;
 I=HASH.(WORD,5) 000790
 SCANER=SEQRDR.(KEY(I)) 000800
 SF=0 000810
 THROUGH SEARCH, FOR J=0,0, SF .G. 0 000820
 CAND= SEQLR.(SCANER,SF) 000830
 WHENEVER SF .G. 0, TRANSFER TO NOTYET 000840
SEARCH WHENEVER TOP.(CAND) .E. WORD, TRANSFER TO KEYFND 000850
;
; Is WORD a keyword? Try to locate it in the KEY hashmap.
;
; Recall that more than one keyword may hash to the same entry in KEY,
; so each entry in KEY is a list that may have zero, one or many keyword
; transformation rules associated with it. We need to look through this
; list to see if it contains a keyword that exactly matches WORD.
;
; HASH the WORD to get the index I in the KEY table where this word
; would have been stored, if it is a keyword
; loop {
; try to read the next candidate list from the hashmap entry KEY(I)
; if there isn't another candidate list {
; WORD didn't match any entries so it's not a keyword

; goto NOTYET to continue scanning the user's input text
; }
; if WORD is the same as the first entry in this candidate list {
; WORD is a keyword and CAND is the transformation rule for
; this keyword, so goto KEYFND
; }
; }
;
KEYFND READER=TESTS.(CAND,S) 000860
 WHENEVER READER .E. 0, TRANSFER TO NOTYET 000870
;
; Call the TESTS function, defined higher up in this code.
;
; TESTS checks that the whole keyword matches the whole user INPUT word. It
; also performs any keyword substitution in the user INPUT. (e.g. (MY = YOUR))
;
; If TESTS returns 0 it means the keyword is not identical to the word in
; the user input, so goto NOTYET to continue scanning the user INPUT.
;
; [This suggests that keywords must differ in the first six characters.
; (Because TESTS is called only for the first keyword candidate in
; the KEY hashmap that matches the first six characters of the user's
; input word).]
;
 WHENEVER LSTNAM.(CAND) .NE. 0 000880
 DL=LSTNAM.(CAND) 000890
SEQ WHENEVER S .L. 0 000900
 SEQLR.(S,F) 000910
 TRANSFER TO SEQ 000920
 OTHERWISE 000930
 NEWTOP.(DL,LSPNTR.(S)) 000940
 END OF CONDITIONAL 000950
 OTHERWISE 000960
 END OF CONDITIONAL 000970
;
; ???
;
 NEXT=SEQLR.(READER,FR) 000980
 WHENEVER FR .G. 0, TRANSFER TO NOTYET 000990
;
; Read the next element in the rules associated with this keyword.
; If we are back at the rules header, the rules list was empty, so goto
; NOTYET to continue scanning the user INPUT.
;
 WHENEVER IT .E. 0 .AND. FR .E. 0 001000
PLCKEY IT=READER 001010
 KEYWRD=WORD 001020
;
; 001000 If this is the first keyword we've encountered in the user's INPUT
; (IT .E. 0), and the first entry in the associated rules is a list
; rather than a value (FR .E. 0)???, i.e. there is no precedence associated
; with this keyword, then record the associated rules reader in IT and
; the found keyword in KEYWRD. Then goto NOTYET (001100) to continue
; scanning the user's input.
;
 OR WHENEVER FR .L. 0 .AND. NEXT .G. PREDNC 001030
 PREDNC=NEXT 001040
 NEXT=SEQLR.(READER,FR) 001050
 TRANSFER TO PLCKEY 001060
 OTHERWISE 001070
 TRANSFER TO NOTYET 001080
 END OF CONDITIONAL 001090
 TRANSFER TO NOTYET 001100

 R* * * * * * * * * * END OF MAJOR LOOP 001110
;
; 001030 Otherwise, if the first entry in the associated rules is a value???
; (FR .L. 0), i.e. the precedence of this keyword, and that value is greater
; than the precedence of the previously found highest precedence keyword
; (NEXT .G. PREDNC), then record the new highest precedence value in PREDNC
; and move the rule reader past the precedence value, then goto PLCKEY to
; also record the reader in IT and the found keyword in KEYWRD. Finally, goto
; NOTYET (001100) to continue scanning the user's input.
;
; Note that this differs from Weizenbaum's CACM paper, where it says that
; keywords of higher precedence are added to the top of a keyword stack and
; keywords of lower precedence are added to the bottom of this stack. This
; also means this code does not support the "NEWKEY" functionality he
; describes.
;
; [Note that this code implies that keywords in the script should never
; specify a precedence value of 0. If they do they would never be used
; (because NEXT .G. PREDNC will never be true).]
;
; 001080 Otherwise, ignore this keyword and return to NOTYET to continue
; scanning the user's INPUT.
;
ENDTXT WHENEVER IT .E. 0 001120
 WHENEVER LIMIT .E. 4 .AND. LISTMT.(MYLIST) .NE. 0 001130
 OUT=POPTOP.(MYLIST) 001140
 TXTPRT.(OUT,0) 001150
 IRALST.(OUT) 001160
 TRANSFER TO START 001170
 OTHERWISE 001180
 ES=BOT.(TOP.(KEY(32))) 001190
 TRANSFER TO TRY 001200
 END OF CONDITIONAL 001210
;
; 001120 If IT is 0 it means we did not find any keywords in the user's
; input, so we cannot construct a response from the user's input combined
; with any of the transformation rules in the script.
;
; Instead we do one of two things: either print one of the memories we
; previously recorded in MYLIST, if any, or we use one of the messages
; from the NONE list (which is recorded in KEY(32)).
;
; 001130 This is the mysterious "when a certain counting mechanism is in a
; particular state": recall a memory only if the memory list (MYLIST) isn't
; empty and LIMIT happens to have the value 4.
;
 OR WHENEVER KEYWRD .E. MEMORY 001220
 I=HASH.(BOT.(INPUT),2)+1 001230
 NEWBOT.(REGEL.(MYTRAN(I),INPUT,LIST.(MINE)),MYLIST) 001240
 SEQLL.(IT,FR) 001250
 TRANSFER TO MATCH 001260
;
; Otherwise, we did find a keyword (IT .E. 0 is false). If the keyword is
; the MEMORY keyword ("MY" in the DOCTOR script), then add a new memory to
; MYLIST before we carry on processing the transformation rules associated
; with the matched keyword.
;
; In the 1966 CACM paper, Weizenbaum says the selection of one of the
; transformations on the MEMORY list is random. The code shows that the
; selection is determined by the HASH value of the last word in the user's
; input. This means ELIZA conversations are repeatable, not random. If we
; have the HASH algorithm we should be able to reproduce the exact
; conversation. (The HASH function is part of the SLIP system.)

;
 OTHERWISE 001270
 SEQLL.(IT,FR) 001280
;
; Otherwise, the keyword we found isn't the MEMORY keyword, so just position
; the transformation rule sequence reader past the keyword and fall through
; to the matching code.
;
 R* * * * * * * * * * MATCHING ROUTINE 001290
MATCH ES=SEQLR.(IT,FR) 001300
 WHENEVER TOP.(ES) .E. $=$ 001310
 S=SEQRDR.(ES) 001320
 SEQLR.(S,F) 001330
 WORD=SEQLR.(S,F) 001340
 I=HASH.(WORD,5) 001350
 SCANER=SEQRDR.(KEY(I)) 001360
SCAN ITS=SEQLR.(SCANER,F) 001370
 WHENEVER F .G. 0, TRANSFER TO NOMATCH(LIMIT) 001380
 WHENEVER WORD .E. TOP.(ITS) 001390
 S=SEQRDR.(ITS) 001400
SCANI ES=SEQLR.(S,F) 001410
 WHENEVER F .NE.0, TRANSFER TO SCANI 001420
 IT=S 001430
 TRANSFER TO TRY 001440
 OTHERWISE 001450
 TRANSFER TO SCAN 001460
 END OF CONDITIONAL 001470
 END OF CONDITIONAL 001480
 WHENEVER FR .G. 0, TRANSFER TO NOMATCH(LIMIT) 001490
;
; If this keyword is a link to another keyword, switch to that keyword.
;
; An ELIZA script rule may have the form (HOW (=WHAT)). If the keyword
; HOW appears in the user's input and this transformation rule is selected,
; ELIZA will use the transformation rule associated with the keyword WHAT
; to generate its response.
;
; read the next decomposition rule from the selected transformation rule
; if the decomposition rule starts with an "=" symbol {
; assign the word after the "=" to WORD
; lookup WORD in the KEY hashmap
; if WORD doesn't exist in the KEY hashmap {
; (presumably this indicates a logical inconsistency in the script)
; goto one of the NOMATCH(1) .. NOMATCH(4) labels to print
; a message such as "HMMM" and back to the main conversation loop
; which NOMATCH label is selected is determined by the value LIMIT
; happens to have at this time
; }
; else {
; position IT at first decomposition rule for the linked keyword
; goto the TRY label to try to apply the decomposition rule
; }
; }
; else if there were no (or no more) decomposition rules (FR .G. 0) {
; (does this indicate an incorrectly formed script?)
; goto one of the NOMATCH(1) .. NOMATCH(4) labels
; }
;
TRY WHENEVER YMATCH.(TOP.(ES),INPUT,MTLIST.(TEST)) .E. 0,TRANSFER TO MATCH
001500
;
; Attempt to match the current decomposition rule (TOP.(ES)) to the user's
; INPUT.

;
; If it doesn't match (YMATCH returns 0), goto MATCH to try the next
; decomposition rule in the current transformation rule set.
;
; If it does match, the list TEST will contain the decomposed matching parts
; of the INPUT text ready for reassembly. E.g. ???
;
; The YMATCH function is part of the SLIP system.
;
 ESRDR=SEQRDR.(ES) 001510
 SEQLR.(ESRDR,ESF) 001520
 POINT=SEQLR.(ESRDR,ESF) 001530
 POINTR=LSPNTR.(ESRDR) 001540
 WHENEVER ESF .E. 0 001550
 NEWBOT.(1,POINTR) 001560
 TRANS=POINT 001570
 TRANSFER TO HIT 001580
 OTHERWISE 001590
 THROUGH FNDHIT,FOR I=0,1, I .G. POINT 001600
FNDHIT TRANS=SEQLR.(ESRDR,ESF) 001610
 WHENEVER ESF .G. 0 001620
 SEQLR.(ESRDR,ESF) 001630
 SEQLR.(ESRDR,ESF) 001640
 TRANS=SEQLR.(ESRDR,ESF) 001650
 SUBST.(1,POINTR) 001660
 TRANSFER TO HIT 001670
 OTHERWISE 001680
 SUBST.(POINT+1,POINTR) 001690
 TRANSFER TO HIT 001700
 END OF CONDITIONAL 001710
 END OF CONDITIONAL 001720
;
; Select one of the reassembly rules associated with this decomposition rule.
;
; Reassembly rules are used in turn. This code adds a counter (001560) to
; the rules and uses it to record which reassembly rule was used last (001690).
; When all reassembly rules have been used (001620) the counter is returned
; to 1 (001660) and the first rule is used again.
;
HIT TXTPRT.(ASSMBL.(TRANS,TEST,MTLIST.(OUTPUT)),0) 001730
 TRANSFER TO START 001740
 END OF CONDITIONAL 001750
;
; Finally, use the selected reassembly rule (TRANS) and list of decomposition
; parts (TEST) to assemble a response (in the list OUTPUT) and print it. Then
; goto the START label to await the next user input and continue the
; conversation.
;
; The ASSMBL function is part of the SLIP system.
;
; The END OF CONDITIONAL (END OF CONDITIONAL) on line 001750 closes the OTHERWISE
(OTHERWISE)
; on line 001270. ???
;
 R* * * * * * * * * * INSERT NEW KEYWORD LIST 001760
NEWLST POPTOP.(INPUT) 001770
 NEWBOT.(LSSCPY.(INPUT,LIST.(9)),KEY(HASH. 001780
 1(TOP.(INPUT),5))) 001790
 TRANSFER TO START 001800
 R* * * * * * * * * * DUMP REVISED SCRIPT 001810
ENDPLA PRINT COMMENT $WHAT IS TO BE THE NUMBER OF THE NEW SCRIPT$ 001820
 READ FORMAT SNUMB,SCRIPT 001830
 LPRINT.(INPUT,SCRIPT) 001840

 NEWTOP.(MEMORY,MTLIST.(OUTPUT)) 001850
 NEWTOP.($MEMORY$,OUTPUT) 001860
 THROUGH DUMP, FOR I=1,1 I .G. 4 001870
DUMP NEWBOT.(MYTRAN(I),OUTPUT) 001880
 LPRINT.(OUTPUT,SCRIPT) 001890
 MTLIST.(OUTPUT) 001900
 THROUGH WRITE, FOR I=0,1, I .G. 32 001910
POPMOR WHENEVER LISTMT.(KEY(I)) .E. 0, TRANSFER TO WRITE 001920
 LPRINT.(POPTOP.(KEY(I)),SCRIPT) 001930
 TRANSFER TO POPMOR 001940
WRITE CONTINUE 001950
 LPRINT.(MTLIST.(INPUT),SCRIPT) 001960
 EXIT. 001970
 R* * * * * * * * * * SCRIPT ERROR EXIT 001980
NOMATCH(1) PRINT COMMENT $PLEASE CONTINUE $ 002200
 TRANSFER TO START 002210
NOMATCH(2) PRINT COMMENT $HMMM $ 002220
 TRANSFER TO START 002230
NOMATCH(3) PRINT COMMENT $GO ON , PLEASE $ 002240
 TRANSFER TO START 002250
NOMATCH(4) PRINT COMMENT $I SEE $ 002260
 TRANSFER TO START 002270
 VECTOR VALUES SNUMB= $I3 * $ 002280
 END OF PROGRAM 002290

